SelfDecode uses the only scientifically validated genetic prediction technology for consumers. Read more

SLC4A1

Sign Up to Unlock Personalized Results

Summary

The SLC4A1 gene encodes a protein known as anion exchanger 1, which transports negatively charged atoms across cell membranes. This helps maintain the correct pH in the body (R). 

Protein names

solute carrier family 4 member 1 (Diego blood group) [Source:HGNC Symbol;Acc:HGNC:11027]

GHR Function

The SLC4A1 gene provides instructions for making a protein known as anion exchanger 1 (AE1). This protein transports negatively charged atoms (anions) across cell membranes. Specifically, AE1 exchanges negatively charged atoms of chlorine (chloride ions) for negatively charged bicarbonate molecules (bicarbonate ions). Based on this function, AE1 is known as a chloride/bicarbonate exchanger (Cl/HCO3 exchanger). The main function of this exchanger is to maintain the correct acid levels (pH) in the body.


There are two versions of the AE1 protein that differ in size. The shorter version is found in specialized kidney cells, called alpha-intercalated cells, that line structures in the kidney called renal tubules. The renal tubules reabsorb substances that are needed and eliminate unneeded substances in urine. Specifically, alpha-intercalated cells release acid into the urine to be removed from the body. In alpha-intercalated cells, the exchange of bicarbonate through the AE1 protein allows acid to be released from the cell into the urine.


The longer version of AE1 is found in red blood cells. In addition to exchanging ions, the longer AE1 protein attaches to other proteins that make up the structural framework (the cytoskeleton) of red blood cells, helping to maintain their structure. In red blood cells, the AE1 protein can interact with another protein called glycophorin A, which helps ensure AE1 gets moved (trafficked) to the correct location of the cell. Glycophorin A is not found in kidney cells.

More Information

     hereditary spherocytosis Genetics Home Reference provides information about hereditary spherocytosis. SLC4A1-associated distal renal tubular acidosis At least 18 SLC4A1 gene mutations have been found to cause SLC4A1-associated distal renal tubular acidosis, a kidney (renal) disorder that leads to the buildup of acid in the blood (metabolic acidosis). Some people with this condition also have blood cell abnormalities, such as hereditary spherocytosis, hereditary stomatocytosis, or Southeast Asian ovalocytosis (described below). The blood cell abnormalities can lead to hemolytic anemia, in which the abnormal red blood cells are prematurely broken down. SLC4A1 gene mutations cause both autosomal dominant and autosomal recessive forms of SLC4A1-associated distal renal tubular acidosis. The SLC4A1 gene mutations involved in SLC4A1-associated distal renal tubular acidosis lead to production of altered AE1 proteins that are either stuck inside the cell or trafficked to the wrong side of the cell. In the autosomal dominant form of the condition, gene mutations affect only one copy of the SLC4A1 gene, and normal AE1 protein is produced from the other copy. However, the altered protein attaches to the normal protein and keeps it from getting to the correct location, leading to a severe reduction or absence of AE1 protein in the correct part of the cell membrane. In autosomal recessive SLC4A1-associated distal renal tubular acidosis, both copies of the SLC4A1 gene are mutated, so all of the protein produced from this gene is altered and not trafficked correctly. Improper location or absence of AE1 in kidney cell membranes disrupts bicarbonate exchange, and as a result, acid cannot be released into the urine. Instead, the acid builds up in the blood, leading to metabolic acidosis. The inability to remove acid from the body also leads to the other features of distal renal tubular acidosis, including soft, weak bones; calcium deposits in the kidneys; and kidney stones. Studies suggest that with the help of glycophorin A, the altered AE1 protein can often get to the cell membrane in red blood cells, which explains why most people with SLC4A1-associated distal renal tubular acidosis do not have blood cell abnormalities. However, some altered AE1 proteins cannot be helped by glycophorin A and are not trafficked to red blood cell membranes. Without AE1, the red blood cells are unstable; breakdown of these abnormal red blood cells may lead to hemolytic anemia. other disorders Mutations in the SLC4A1 gene can cause several blood disorders, including hereditary spherocytosis, hereditary stomatocytosis, and Southeast Asian ovalocytosis. Each of these conditions has an autosomal dominant inheritance pattern, which means a mutation in one copy of the SLC4A1 gene is sufficient to cause the disorder. The mutations involved in hereditary spherocytosis lead to a reduction of AE1 protein, which results in abnormal red blood cells that are round and spherical rather than a flattened disk shape and are more fragile than usual. The abnormal cells are prematurely broken down, causing hemolytic anemia. Other features of hereditary spherocytosis, resulting from the breakdown of red blood cells, include yellowing of the skin and whites of the eyes (jaundice), gallstones, and an enlarged spleen (splenomegaly). Hereditary stomatocytosis is characterized by abnormally shaped red blood cells that resemble a mouth or “stoma”. This condition is caused by an abnormal AE1 protein that allows positively charged molecules of sodium (Na+) and potassium (K+) to leak out of the cell. As a result, the red blood cells are unstable and are broken down more quickly than usual, leading to hemolytic anemia and related features. Southeast Asian ovalocytosis is a blood disorder most common in regions where malaria is prevalent, primarily Southeast Asian countries including Thailand and Malaysia. The mutation that causes this disorder, often referred to as the SAO mutation, deletes nine protein building blocks (amino acids) in the AE1 protein. This change leads to a reduction of AE1 on the surface of red blood cells; as a result, the cells are unusually rigid and oval-shaped. The abnormal cells typically do not cause any health problems in affected individuals. Research indicates that Southeast Asian ovalocytosis, which is caused by a mutation in one copy of the SLC4A1 gene, protects against severe neurological complications of malaria. However, having the SAO mutation in both copies of the gene is likely lethal before birth. While a shortage of the AE1 protein in the cell membrane affects the structure of red blood cells in these blood disorders, researchers speculate that enough normal AE1 protein remains in kidney cells for anion exchange and acid release, so affected individuals do not develop distal renal tubular acidosis (described above).

     The SLC4A1 gene provides instructions for making a protein known as anion exchanger 1 (AE1). This protein transports negatively charged atoms (anions) across cell membranes. Specifically, AE1 exchanges negatively charged atoms of chlorine (chloride ions) for negatively charged bicarbonate molecules (bicarbonate ions). Based on this function, AE1 is known as a chloride/bicarbonate exchanger (Cl-/HCO3- exchanger). The main function of this exchanger is to maintain the correct acid levels (pH) in the body. There are two versions of the AE1 protein that differ in size. The shorter version is found in specialized kidney cells, called alpha-intercalated cells, that line structures in the kidney called renal tubules. The renal tubules reabsorb substances that are needed and eliminate unneeded substances in urine. Specifically, alpha-intercalated cells release acid into the urine to be removed from the body. In alpha-intercalated cells, the exchange of bicarbonate through the AE1 protein allows acid to be released from the cell into the urine. The longer version of AE1 is found in red blood cells. In addition to exchanging ions, the longer AE1 protein attaches to other proteins that make up the structural framework (the cytoskeleton) of red blood cells, helping to maintain their structure. In red blood cells, the AE1 protein can interact with another protein called glycophorin A, which helps ensure AE1 gets moved (trafficked) to the correct location of the cell. Glycophorin A is not found in kidney cells.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

US & EU Based Labs & Shipping

HSA/FSA Eligible

Essential Bundle

SelfDecode DNA Kit Included

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer

Essential

Bundle

SelfDecode DNA Kit Included

  • Everything in essential
  • Detox Pathways
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health

Limited time offer 25% off

Ultimate Bundle

SelfDecode DNA Kit Included

  • Everything in essential+
  • Medication Check (PGx testing) for 50+ medications
  • DNAmind PGx Report
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Composition
  • Deep Ancestry (Mitochondrial)
$927
$695

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 100+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps