SLC26A2

Sign Up to Unlock Personalized Results

Summary

The SLC26A2 gene encodes a protein that transports ions across cell membranes. It helps develop cartilage cells (R). 

Mutations in this gene can cause disorders that stop the normal growth of bones and cartilage (R)

Protein names

solute carrier family 26 member 2 [Source:HGNC Symbol;Acc:HGNC:10994]

GHR Function

The SLC26A2 gene provides instructions for making a protein that transports charged molecules (ions), particularly sulfate ions, across cell membranes. This protein appears to be active in many of the body’s tissues, including developing cartilage. Cartilage is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears.


Cartilage cells use sulfate ions transported by the SLC26A2 protein to build molecules called proteoglycans. These molecules, which each consist of several sugars attached to a protein, help give cartilage its rubbery, gel-like structure. Because sulfate ions are required to make proteoglycans, the transport activity of the SLC26A2 protein is essential for normal cartilage formation.

More Information

The SLC26A2 gene encodes a protein that transports ions across cell membranes. It helps develop cartilage cells (R). 

Mutations in this gene can cause disorders that stop the normal growth of bones and cartilage (R)

     achondrogenesis At least eight mutations in the SLC26A2 gene have been found to cause a form of achondrogenesis known as type 1B or the Parenti-Fraccaro type. This rare disorder of bone development is characterized by extremely short limbs, short fingers and toes, a narrow chest, and a prominent, rounded abdomen. Serious health problems result from these abnormalities, and infants with achondrogenesis usually die before or soon after birth. Two SLC26A2 gene mutations appear to be relatively common causes of achondrogenesis type 1B. One of these mutations deletes a single protein building block (amino acid) at position 341 in the SLC26A2 protein. This genetic change is written as Val341del. The other mutation deletes three DNA building blocks (base pairs) at a specific place in the SLC26A2 gene. This genetic change is written as c.1020_1022delTGT. The SLC26A2 gene mutations that cause achondrogenesis type 1B prevent the production of any functional protein from the SLC26A2 gene. Without this protein, cartilage cells are unable to take up the necessary sulfate ions, and cells cannot produce normal proteoglycans. A lack of these important molecules severely disrupts the structure of cartilage, making it look coarse and spongelike under a microscope. Because much of the skeleton develops from cartilage before birth and in early childhood, SLC26A2 gene mutations prevent bones from developing and growing normally, causing the severe skeletal abnormalities seen in achondrogenesis type 1B. atelosteogenesis type 2 At least eight SLC26A2 gene mutations have been identified in people with atelosteogenesis type 2, another severe disorder of cartilage and bone development. Affected individuals typically have a mutation in one copy of the gene that disrupts the normal structure of the SLC26A2 protein, and a mutation in the other copy of the gene that prevents the production of any functional protein. One common mutation that causes atelosteogenesis type 2 replaces the amino acid arginine with the amino acid tryptophan at position 279 in the protein (written as Arg279Trp or R279W). In the Finnish population, the most common mutation (usually written as IVS1+2T>C) interferes with the normal processing of the SLC26A2 protein. SLC26A2 gene mutations alter the structure and function of the SLC26A2 transporter protein, which disrupts the ability of cartilage cells to take up the necessary sulfate ions. The cell is then unable to produce normal proteoglycans, which affects the structure of cartilage and the normal formation and growth of bones. diastrophic dysplasia More than 20 SLC26A2 gene mutations have been identified in people with diastrophic dysplasia. This disorder of cartilage and bone development has features similar to those of atelosteogenesis type 2 (described above), although diastrophic dysplasia tends to be less severe. Like people with atelosteogenesis type 2, people with diastrophic dysplasia usually have a mutation in one copy of the gene that disrupts the normal structure of the SLC26A2 protein and a mutation in the other copy of the gene that prevents the production of any functional protein. The SLC26A2 gene mutations that cause diastrophic dysplasia disrupt the ability of cartilage cells to take up the necessary sulfate ions. Without enough sulfate, the cell is unable to produce normal proteoglycans. A lack of these essential molecules affects the structure of cartilage and the normal formation and growth of bones. multiple epiphyseal dysplasia At least four mutations in the SLC26A2 gene have been found in people with multiple epiphyseal dysplasia, a disorder of cartilage and bone development that primarily affects the ends of the long bones in the arms and legs (epiphyses). SLC26A2 gene mutations cause the recessive form of the disorder, which is also characterized by malformations of the hands, feet, and knees; abnormal curvature of the spine (scoliosis); and other birth defects. Mutations that cause recessive multiple epiphyseal dysplasia typically replace one amino acid with another amino acid in the SLC26A2 protein. The most common mutation replaces the amino acid arginine with the amino acid tryptophan at position 279 in the protein (written as Arg279Trp or R279W). Another mutation that commonly causes this condition replaces the amino acid cysteine with the amino acid serine at position 653 in the SLC26A2 protein (written as Cys653Ser or C653S). The SLC26A2 gene mutations that result in recessive multiple epiphyseal dysplasia tend to have less serious effects than mutations that cause life-threatening skeletal disorders such as achondrogenesis type 1B. As a result of these milder mutations, the SLC26A2 protein likely retains some of its function as a transporter of sulfate ions. Cartilage and bone formation are impaired to a lesser degree, which may help explain the less severe signs and symptoms of recessive multiple epiphyseal dysplasia.

     The SLC26A2 gene provides instructions for making a protein that transports charged molecules (ions), particularly sulfate ions, across cell membranes. This protein appears to be active in many of the body’s tissues, including developing cartilage. Cartilage is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears. Cartilage cells use sulfate ions transported by the SLC26A2 protein to build molecules called proteoglycans. These molecules, which each consist of several sugars attached to a protein, help give cartilage its rubbery, gel-like structure. Because sulfate ions are required to make proteoglycans, the transport activity of the SLC26A2 protein is essential for normal cartilage formation.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps