SCN5A

Sign Up to Unlock Personalized Results

Summary

The SCN5A gene provide instructions for making sodium channels. These channels play key roles in these cells' ability to generate and transmit electrical signals and help maintain a normal heart rhythm (R). 

Protein names

sodium voltage-gated channel alpha subunit 5 [Source:HGNC Symbol;Acc:HGNC:10593]

GHR Function

The SCN5A gene belongs to a family of genes that provide instructions for making sodium channels. These channels open and close at specific times to control the flow of positively charged sodium atoms (sodium ions) into cells. The sodium channels produced from the SCN5A gene are abundant in heart (cardiac) muscle and play key roles in these cells’ ability to generate and transmit electrical signals. These channels play a major role in signaling the start of each heartbeat, coordinating the contractions of the upper and lower chambers of the heart, and maintaining a normal heart rhythm.

More Information

     Brugada syndrome More than 300 mutations in the SCN5A gene have been identified in people with Brugada syndrome, which is a heart condition characterized by an irregular heart rhythm (arrhythmia). SCN5A gene mutations also cause sudden unexpected nocturnal death syndrome (SUNDS), which was originally described in Southeast Asian populations. Researchers have since determined that SUNDS and Brugada syndrome are the same disorder. Some SCN5A gene mutations change single protein building blocks (amino acids) in the SCN5A protein. These mutations alter the structure of ion channels made with the SCN5A protein and disrupt the flow of sodium ions into cardiac muscle cells. Other mutations prevent the SCN5A gene from producing any functional ion channels, which also reduces the inward flow of sodium ions. A disruption in ion transport changes the way the heart beats, leading to the arrhythmia often found in Brugada syndrome and SUNDS. familial dilated cardiomyopathy Genetics Home Reference provides information about familial dilated cardiomyopathy. progressive familial heart block A few mutations in the SCN5A gene have been found to cause progressive familial heart block. This condition alters the normal beating of the heart and can lead to fainting (syncope) or sudden cardiac arrest and death. The SCN5A gene mutations change single protein building blocks (amino acids) in the SCN5A protein. Channels made with this altered protein allow little or no sodium to enter the cell. Cardiac cells with these altered channels have difficulty producing and transmitting electrical signals that coordinate normal heartbeats. Interruption of this signaling causes heart block. Death of these impaired cardiac cells over time can lead to a buildup of scar tissue (fibrosis), worsening the heart block. Romano-Ward syndrome More than 200 mutations in the SCN5A gene are known to cause Romano-Ward syndrome, often called long QT syndrome. This condition causes the cardiac muscle to take longer than usual to recharge between beats, which can lead to arrhythmia. The SCN5A gene mutations that cause Romano-Ward syndrome include changes in single amino acids and deletions or insertions of a small number of amino acids in the SCN5A protein. Channels made with these altered SCN5A proteins stay open longer than usual, which allows sodium ions to continue flowing into cardiac muscle cells abnormally. This delay in channel closure alters the transmission of electrical signals in the heart, increasing the risk of an irregular heartbeat that can cause fainting (syncope) or sudden death. sick sinus syndrome At least 10 mutations in the SCN5A gene have been found to cause another heart condition called sick sinus syndrome. This condition affects the function of the sino-atrial (SA) node, which is an area of specialized cells in the heart that functions as a natural pacemaker. The SCN5A gene mutations that cause sick sinus syndrome lead to the production of nonfunctional sodium channels or abnormal channels that cannot transport ions properly. The flow of these ions is essential for creating the electrical impulses that start each heartbeat and spread these signals to other areas of the heart. Mutations reduce the flow of sodium ions, which alters the SA node’s ability to create and spread electrical signals. These changes increase the risk of abnormally fast or slow heartbeats, which can cause dizziness, light-headedness, syncope, and related symptoms. other disorders Variations in the SCN5A gene are associated with several other heart conditions. These include potentially life-threatening forms of arrhythmia called atrial fibrillation and ventricular fibrillation. The genetic variations associated with these conditions alter the flow of sodium ions through the channel, which can lead to abnormal heart rhythms and affect the heart’s ability to pump blood. SCN5A gene mutations have also been identified in some cases of sudden infant death syndrome (SIDS). SIDS is a major cause of death in babies younger than 1 year. It is characterized by sudden and unexplained death, usually during sleep. Researchers are working to determine how changes in the SCN5A gene could contribute to SIDS. Other genetic and environmental factors, many of which have not been identified, also play a part in determining the risk of this disorder. Certain drugs, including medications used to treat arrhythmias, infections, seizures, and psychotic disorders, can lead to an abnormal heart rhythm in some people. This drug-induced heart condition, which is known as acquired long QT syndrome, increases the risk of cardiac arrest and sudden death. A small percentage of cases of acquired long QT syndrome occur in people who have an underlying change in the SCN5A gene.

     The SCN5A gene belongs to a family of genes that provide instructions for making sodium channels. These channels open and close at specific times to control the flow of positively charged sodium atoms (sodium ions) into cells. The sodium channels produced from the SCN5A gene are abundant in heart (cardiac) muscle and play key roles in these cells’ ability to generate and transmit electrical signals. These channels play a major role in signaling the start of each heartbeat, coordinating the contractions of the upper and lower chambers of the heart, and maintaining a normal heart rhythm.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps