RYR1

Sign Up to Unlock Personalized Results

Summary

The gene codes for a protein, ryanodine receptor 1. Mutations are linked to malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia [R].

Protein names

ryanodine receptor 1 [Source:HGNC Symbol;Acc:HGNC:10483]

GHR Function

The RYR1 gene provides instructions for making a protein called ryanodine receptor 1. This protein is part of a family of ryanodine receptors, which form channels that transport positively charged calcium atoms (ions) within cells. Channels made with the ryanodine receptor 1 protein play a critical role in muscles used for movement (skeletal muscles).


For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged ions, including calcium, into muscle cells.


When muscles are at rest, calcium ions are stored in a cellular structure called the sarcoplasmic reticulum inside each muscle cell. In response to certain signals, the RYR1 channel releases calcium ions from the sarcoplasmic reticulum into the surrounding cell fluid (cytoplasm). The resulting increase in calcium ion concentration stimulates muscle fibers to contract, allowing the body to move. The process by which certain chemical signals trigger muscle contraction is called excitation-contraction (E-C) coupling.

More Information

     central core disease More than 90 mutations in the RYR1 gene have been identified in people with central core disease (CCD). Most of these mutations affect single protein building blocks (amino acids) in critical regions of the ryanodine receptor 1 protein. These mutations change the structure of the RYR1 channel, which alters the normal flow of stored calcium ions within muscle cells. A disruption in calcium ion release prevents muscles from contracting normally, leading to the muscle weakness characteristic of central core disease. Researchers have proposed two mechanisms to explain how RYR1 gene mutations underlie muscle weakness in people with central core disease. Some genetic changes cause the RYR1 channel to be “leaky,” allowing calcium ions to flow slowly but continually out of the sarcoplasmic reticulum. The leaky channels greatly reduce the amount of stored calcium ions. As a result, not enough calcium ions are available in the sarcoplasmic reticulum to trigger muscle contractions. Muscle weakness results from the inability of skeletal muscles to contract appropriately. Other RYR1 gene mutations change the structure of the RYR1 channel in a way that impedes the normal flow of calcium ions. Although the sarcoplasmic reticulum stores plenty of these ions, the receptor cannot release them in response to the usual signals. Without enough calcium ions flowing out of the sarcoplasmic reticulum at the appropriate time, muscles cannot contract normally and muscle weakness results. This mechanism is known as E-C uncoupling. centronuclear myopathy Genetics Home Reference provides information about centronuclear myopathy. congenital fiber-type disproportion At least seven mutations in the RYR1 gene have been found to cause congenital fiber-type disproportion, a disorder that causes general muscle weakness that typically does not worsen over time. Some mutations change single amino acids in the ryanodine receptor 1 protein. Other RYR1 gene mutations create a premature stop signal in the instructions for making the receptor, resulting in an abnormally short, nonfunctional protein. Researchers suspect that disruption of the RYR1 channel may play a role in the muscle weakness and other features of congenital fiber-type disproportion, although the role of RYR1 gene mutations in this condition is unclear. malignant hyperthermia At least 217 mutations in the RYR1 gene are known to increase the risk of malignant hyperthermia. Most of these mutations change single amino acids in important regions of the ryanodine receptor 1 protein. These mutations alter the structure of the RYR1 channel, causing it to open more easily and close more slowly in response to certain drugs (particularly some anesthetic gases and a type of muscle relaxant used during surgery). As a result, large amounts of calcium ions are released from the sarcoplasmic reticulum within muscle cells. An overabundance of available calcium ions causes skeletal muscles to contract abnormally, which leads to muscle rigidity in people with malignant hyperthermia. An increase in calcium ion concentration within muscle cells also activates processes that generate heat (leading to increased body temperature) and produce excess acid (leading to acidosis). Many other changes in the RYR1 gene have been described in people with an increased risk of malignant hyperthermia. It is unclear, however, whether these variations are directly related to malignant hyperthermia risk. multiminicore disease Several mutations in the RYR1 gene have been found to cause atypical forms of multiminicore disease. These mutations change single amino acids in the ryanodine receptor 1 protein, which alters the structure and function of the protein. The effects of these changes are unclear. Some mutations may reduce the amount of ryanodine receptor 1 protein produced by the cell or lead to an unstable version of the protein. Other mutations may interfere with the normal regulation of the RYR1 channel. Researchers believe that some RYR1 gene mutations change the shape of the channel in such a way that calcium ions cannot flow through properly. A disruption in calcium ion transport prevents muscles from contracting normally, leading to the muscle weakness characteristic of multiminicore disease.

     The RYR1 gene provides instructions for making a protein called ryanodine receptor 1. This protein is part of a family of ryanodine receptors, which form channels that transport positively charged calcium atoms (ions) within cells. Channels made with the ryanodine receptor 1 protein play a critical role in muscles used for movement (skeletal muscles). For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged ions, including calcium, into muscle cells. When muscles are at rest, calcium ions are stored in a cellular structure called the sarcoplasmic reticulum inside each muscle cell. In response to certain signals, the RYR1 channel releases calcium ions from the sarcoplasmic reticulum into the surrounding cell fluid (cytoplasm). The resulting increase in calcium ion concentration stimulates muscle fibers to contract, allowing the body to move. The process by which certain chemical signals trigger muscle contraction is called excitation-contraction (E-C) coupling.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps