SelfDecode uses the only scientifically validated genetic prediction technology for consumers. Read more

MYH7

Sign Up to Unlock Personalized Results

Summary

The gene codes for a protein, myosin heavy chain 7. Mutations are linked to familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy [R].

Protein names

myosin heavy chain 7 [Source:HGNC Symbol;Acc:HGNC:7577]

GHR Function

The MYH7 gene provides instructions for making a protein known as the cardiac beta (β)-myosin heavy chain. This protein is found in heart (cardiac) muscle and in type I skeletal muscle fibers. Type I fibers, which are also known as slow-twitch fibers, are one of two types of fibers that make up skeletal muscles. Type I fibers are the primary component of skeletal muscles that are resistant to fatigue. For example, muscles involved in posture, such as the neck muscles that hold the head steady, are made predominantly of type I fibers.


In cardiac and skeletal muscle cells, the β-myosin heavy chain forms part of a larger protein called type II myosin. Each type II myosin protein consists of two heavy chains (produced from the MYH7 gene) and two pairs of regulatory light chains (produced from several other genes). The heavy chains each have two parts: a head region and a tail region. The head region, called the motor domain, interacts with a thin filament protein called actin, which is important for cell movement and shape. The long tail region interacts with other proteins, including the tail regions of other myosin proteins.


Type II myosin generates the mechanical force that is needed for muscles to contract. It is integral to muscle cell structures called sarcomeres, which are the basic units of muscle contraction. Sarcomeres are composed of thick filaments made up of type II myosin and thin filaments made up of actin. The overlapping thick and thin filaments attach to each other and release, which allows the filaments to move relative to one another so that muscles can contract. In the heart, regular contractions of cardiac muscle pump blood to the rest of the body. The coordinated contraction and relaxation of skeletal muscles allow the body to move.

More Information

     congenital fiber-type disproportion Genetics Home Reference provides information about congenital fiber-type disproportion. familial dilated cardiomyopathy Genetics Home Reference provides information about familial dilated cardiomyopathy. familial hypertrophic cardiomyopathy Mutations in the MYH7 gene are a common cause of familial hypertrophic cardiomyopathy, accounting for up to 35 percent of all cases. This condition is characterized by thickening (hypertrophy) of the cardiac muscle. Although some people with hypertrophic cardiomyopathy have no obvious health effects, all affected individuals have an increased risk of heart failure and sudden death. Most MYH7 gene mutations that cause familial hypertrophic cardiomyopathy change single protein building blocks (amino acids) in the β-myosin heavy chain protein. The altered protein is likely incorporated into the thick filament, but it may not function properly. It is unclear how MYH7 gene mutations lead to the features of familial hypertrophic cardiomyopathy. familial restrictive cardiomyopathy Genetics Home Reference provides information about familial restrictive cardiomyopathy. Laing distal myopathy At least five mutations in the MYH7 gene have been found to cause Laing distal myopathy. Most of these mutations result in changes in the tail region of the β-myosin heavy chain. Some of these mutations change single amino acids, while others delete a single amino acid from the heavy chain. Changes in the MYH7 gene probably disrupt the normal function of type II myosin in muscle cells. Specifically, researchers suspect that mutations alter the structure of the tail region of the β-myosin heavy chain. The altered tail region may be unable to interact with other proteins, including the tail regions of other myosin proteins. It is unclear how these changes in the structure and function of myosin lead to progressive muscle weakness in people with Laing distal myopathy. myosin storage myopathy At least five mutations in the MYH7 gene are involved in myosin storage myopathy. This condition causes muscle weakness and is characterized by the formation of protein clumps, which include type II myosin, within type I skeletal muscle fibers. The MYH7 gene mutations that cause myosin storage myopathy change amino acids in the tail region of cardiac β-myosin heavy chain. Researchers suggest that these mutations impair the proper formation of thick filaments. The abnormal proteins accumulate in type I skeletal muscle fibers, forming the protein clumps characteristic of the disorder. It is unclear how the gene mutations lead to muscle weakness in people with myosin storage myopathy. other disorders Mutations in the MYH7 gene can cause dilated cardiomyopathy. This condition weakens and enlarges the heart, preventing it from pumping blood efficiently. Dilated cardiomyopathy increases the risk of heart failure and premature death. Researchers have found about a dozen MYH7 gene mutations in people with this condition. These mutations likely disrupt the normal structure and function of type II myosin. Little is known about the connection between abnormal myosin and the signs and symptoms of this disorder. MYH7 gene mutations are also associated with left ventricular noncompaction, another heart muscle disorder that occurs when the lower left chamber of the heart (left ventricle) does not develop correctly. The heart muscle is weakened and cannot pump blood efficiently, often leading to heart failure. Abnormal heart rhythms (arrhythmias) can also occur in people with this condition. At least 10 MYH7 gene mutations have been found in people with left ventricular noncompaction, although it is unclear what role these mutations play in the disorder. Researchers are working to determine why some of the conditions that result from MYH7 mutations predominantly affect cardiac muscle and others predominantly affect skeletal muscle.

     The MYH7 gene provides instructions for making a protein known as the cardiac beta (β)-myosin heavy chain. This protein is found in heart (cardiac) muscle and in type I skeletal muscle fibers. Type I fibers, which are also known as slow-twitch fibers, are one of two types of fibers that make up skeletal muscles. Type I fibers are the primary component of skeletal muscles that are resistant to fatigue. For example, muscles involved in posture, such as the neck muscles that hold the head steady, are made predominantly of type I fibers. In cardiac and skeletal muscle cells, the β-myosin heavy chain forms part of a larger protein called type II myosin. Each type II myosin protein consists of two heavy chains (produced from the MYH7 gene) and two pairs of regulatory light chains (produced from several other genes). The heavy chains each have two parts: a head region and a tail region. The head region, called the motor domain, interacts with a thin filament protein called actin, which is important for cell movement and shape. The long tail region interacts with other proteins, including the tail regions of other myosin proteins. Type II myosin generates the mechanical force that is needed for muscles to contract. It is integral to muscle cell structures called sarcomeres, which are the basic units of muscle contraction. Sarcomeres are composed of thick filaments made up of type II myosin and thin filaments made up of actin. The overlapping thick and thin filaments attach to each other and release, which allows the filaments to move relative to one another so that muscles can contract. In the heart, regular contractions of cardiac muscle pump blood to the rest of the body. The coordinated contraction and relaxation of skeletal muscles allow the body to move.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

US & EU Based Labs & Shipping

Essential Bundle

SelfDecode DNA Kit Included

  • 24/7 AI Health Coach
  • 1500+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer

HSA & FSA Eligible

Essential

Bundle

SelfDecode DNA Kit Included

  • Everything in essential
  • Detox Pathways
  • Methylation Pathway
  • Histamine Pathway
  • Dopamine & Norepinephrine Pathway Report
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health

HSA & FSA Eligible

HSA & FSA Eligible

Ultimate Bundle

SelfDecode DNA Kit Included

  • Everything in essential+
  • Medication Check (PGx testing) for 50+ medications
  • DNAmind PGx Report
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Composition
  • Deep Ancestry (Mitochondrial)

Limited Time Offer 25% Off

$927
$695
Accepted Payment Methods

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 100+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps