LMNA

Sign Up to Unlock Personalized Results

Summary

The gene codes for a lamin protein. It is involved in nuclear stability, chromatin structure and gene expression. Mutations can cause Emery-Dreifuss muscular dystrophy, familial partial lipodystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy, Charcot-Marie-Tooth disease, and Hutchinson-Gilford progeria syndrome [R].

Protein names

lamin A/C [Source:HGNC Symbol;Acc:HGNC:6636]

GHR Function

The LMNA gene provides instructions for making several slightly different proteins called lamins. The two major proteins produced from this gene, lamin A and lamin C, are made in most of the body’s cells. These proteins are made up of a nearly identical sequence of protein building blocks (amino acids). The small difference in the sequence makes lamin A longer than lamin C.


Lamins A and C are structural proteins called intermediate filament proteins. Intermediate filaments provide stability and strength to cells. Lamins A and C are scaffolding (supporting) components of the nuclear envelope, which is a structure that surrounds the nucleus in cells. Specifically, these proteins are located in the nuclear lamina, a mesh-like layer of intermediate filaments and other proteins that is attached to the inner membrane of the nuclear envelope. The nuclear envelope regulates the movement of molecules into and out of the nucleus, and researchers believe it may play a role in regulating the activity (expression) of certain genes.


The lamin A protein must be processed within the cell before becoming part of the lamina. Its initial form, called prelamin A, undergoes a complex series of steps that are necessary for the protein to be inserted into the lamina. Lamin C does not have to undergo this processing before becoming part of the lamina.

More Information

     Charcot-Marie-Tooth disease At least one LMNA gene mutation has been identified in people with a form of Charcot-Marie-Tooth disease known as type 2B1. Charcot-Marie-Tooth disease is characterized by nerve damage, which can result in loss of sensation and wasting (atrophy) of muscles in the feet, legs, and hands. The mutation changes a single amino acid in the lamin A and lamin C proteins. Specifically, the amino acid arginine is replaced by the amino acid cysteine at protein position 298 (written as Arg298Cys or R298C). Although its effect is not fully understood, the Arg298Cys mutation alters a protein region important for interactions with other molecules. It is unclear how the altered proteins contribute to the signs and symptoms of type 2B1 Charcot-Marie-Tooth disease. Emery-Dreifuss muscular dystrophy More than 100 mutations in the LMNA gene have been identified in people with Emery-Dreifuss muscular dystrophy, a condition characterized by weakness of the muscles used for movement (skeletal muscles) and the heart (cardiac) muscle. Most of these mutations change single amino acids in lamins A and C, which alters the structure of these proteins. The effect of LMNA mutations within cells remains unclear. Abnormal versions of lamins A and C may alter the activity of certain genes or weaken the structure of the nucleus, making cells more fragile. Researchers continue to investigate how LMNA mutations affect skeletal muscles and cardiac muscle, leading to the characteristic features of Emery-Dreifuss muscular dystrophy. familial dilated cardiomyopathy Genetics Home Reference provides information about familial dilated cardiomyopathy. Hutchinson-Gilford progeria syndrome A specific mutation in the LMNA gene has been found in most patients with Hutchinson-Gilford progeria syndrome, which is a condition that causes the dramatic, rapid appearance of aging beginning in childhood. This mutation changes a single DNA building block (nucleotide) in the gene. Specifically, the mutation replaces the nucleotide cytosine with the nucleotide thymine at position 1824 (written as C1824T). This mutation is also sometimes noted as Gly608Gly or G608G, which refers to the position in the lamin A protein affected by the mutation. The C1824T mutation leads to an abnormal version of the lamin A protein called progerin, which is missing 50 amino acids near one end. The location of this mutation does not affect the production of lamin C. Other mutations in the LMNA gene have been identified in a small number of people with the features of Hutchinson-Gilford progeria syndrome. The mutations responsible for this disorder result in an abnormal version of lamin A that cannot be processed correctly within the cell. When the altered protein is incorporated into the lamina, it can disrupt the shape of the nuclear envelope. Over time, a buildup of this altered protein appears to damage the structure and function of the nucleus, making cells more likely to die prematurely. Researchers are working to determine how these changes lead to the signs and symptoms of Hutchinson-Gilford progeria syndrome. limb-girdle muscular dystrophy At least six mutations in the LMNA gene have been identified in people with limb-girdle muscular dystrophy type 1B. Limb-girdle muscular dystrophy is a group of related disorders characterized by muscle weakness and wasting, particularly in the shoulders, hips, and limbs. LMNA gene mutations that cause limb-girdle muscular dystrophy may impair the function of lamin proteins. Impaired lamin protein function may lead to a fragile, easily-damaged cell nucleus or improperly regulated genes that affect a variety of cell activities. It is not known how the effects of LMNA gene mutations relate to the specific signs and symptoms of limb-girdle muscular dystrophy. mandibuloacral dysplasia At least four mutations in the LMNA gene cause a form of mandibuloacral dysplasia called mandibuloacral dysplasia with type A lipodystrophy (MADA). This condition is characterized by a variety of signs and symptoms, which can include bone abnormalities; mottled or patchy skin coloring; and loss of fatty tissue under the skin, particularly affecting the limbs (type A lipodystrophy). The LMNA gene mutations that cause this condition change single protein building blocks (amino acids) in the lamin A and lamin C proteins. The most common mutation replaces the amino acid arginine at position 527 with the amino acid histidine (written as Arg527His or R527H). The effects of LMNA gene mutations are not well understood. The amino acid changes may affect the structure of the lamin A or lamin C protein or both and alter how they interact with other proteins in the nuclear lamina. Some researchers speculate that these changes disrupt the nuclear envelope, making cells more fragile; however, it is unclear how the altered lamin proteins contribute to the signs and symptoms of MADA. other disorders Mutations in the LMNA gene have been found to cause several other inherited conditions. Because the conditions result from mutations that affect lamin proteins, they are known as laminopathies. Familial dilated cardiomyopathy with conduction defects has severe effects on cardiac muscle that result in life-threatening heart problems. The features of this disorder, and also those of limb-girdle muscular dystrophy type 1B, overlap with those of the autosomal dominant form of Emery-Dreifuss muscular dystrophy. Because certain LMNA mutations may be responsible for any of these conditions, researchers suspect that limb-girdle muscular dystrophy type 1B and familial dilated cardiomyopathy with conduction defects may be variants of Emery-Dreifuss muscular dystrophy instead of separate disorders. As in mandibuloacral dysplasia (described above), laminopathies can affect the amount and distribution of fat in the body. Dunnigan-type partial lipodystrophy is characterized by a loss of fatty tissue from the torso and limbs and a buildup of fat around the neck and shoulders. Mutations in the LMNA gene also cause atypical progeroid syndrome (APS); the features of this condition are similar to those of Hutchinson-Gilford progeria syndrome and mandibuloacral dysplasia (described above). As in Hutchinson-Gilford progeria syndrome, children with APS look as though they are aging prematurely, although the signs and symptoms of APS usually begin slightly later in life. APS can also cause similar abnormalities in bone development and fat distribution as mandibuloacral dysplasia, although they are typically milder in APS. Mutations in the LMNA gene have been identified in newborns with a disorder called lethal restrictive dermopathy. Infants with this disorder have tight, rigid skin; underdeveloped lungs; and other abnormalities. They do not usually survive past the first week of life. Researchers have not determined how mutations in the LMNA gene result in this diverse group of disorders, but the multiple roles of the nuclear lamina in cells may help explain the wide variety of signs and symptoms.

     The LMNA gene provides instructions for making several slightly different proteins called lamins. The two major proteins produced from this gene, lamin A and lamin C, are made in most of the body’s cells. These proteins have a nearly identical sequence of protein building blocks (amino acids). The small difference in the sequence makes lamin A longer than lamin C. Lamins A and C are structural proteins called intermediate filament proteins. Intermediate filaments provide stability and strength to cells. Lamins A and C are scaffolding (supporting) components of the nuclear envelope, which is a structure that surrounds the nucleus in cells. Specifically, these proteins are located in the nuclear lamina, a mesh-like layer of intermediate filaments and other proteins that is attached to the inner membrane of the nuclear envelope. The nuclear envelope regulates the movement of molecules into and out of the nucleus, and researchers believe it may play a role in regulating the activity (expression) of certain genes. The lamin A protein must be processed within the cell before becoming part of the lamina. Its initial form, called prelamin A, undergoes a complex series of steps that are necessary for the protein to be inserted into the lamina. Lamin C does not have to undergo this processing before becoming part of the lamina.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps