INSR

Sign Up to Unlock Personalized Results

Summary

The INSR gene encodes a protein called an insulin receptor, which plays many roles in the body. It regulates blood sugar levels by controlling how much sugar is passed from the bloodstream into cells to be used as energy (R). 

 

Protein names

insulin receptor [Source:HGNC Symbol;Acc:HGNC:6091]

GHR Function

The INSR gene provides instructions for making a protein called an insulin receptor, which is found in many types of cells. Insulin receptors are embedded in the outer membrane surrounding the cell, where they attach (bind) to the hormone insulin circulating in the bloodstream. Insulin plays many roles in the body, including regulating blood sugar levels by controlling how much sugar (in the form of glucose) is passed from the bloodstream into cells to be used as energy.


The insulin receptor is initially produced as a single long protein that must be processed by being cut (cleaved) into four parts: two alpha subunits and two beta subunits. These subunits work together as a functioning receptor. The alpha subunits stick out from the surface of the cell, while the beta subunits remain inside the cell. The alpha subunits attach (bind) to insulin, which causes the beta subunits to trigger signaling pathways within the cell that influence many cell functions.

More Information

     Donohue syndrome Researchers have identified more than 150 INSR gene mutations that cause a spectrum of related disorders known as severe insulin resistance syndromes. These include Donohue syndrome and two other conditions, Rabson-Mendenhall syndrome and type A insulin resistance syndrome (described below). Insulin resistance is a condition in which the body’s tissues and organs do not respond properly to insulin. Severe insulin resistance syndromes are characterized by problems with regulating blood sugar levels and impaired development and function of organs and tissues throughout the body. Donohue syndrome is the most severe of the three syndromes; affected children do not survive beyond age 2. The INSR gene mutations associated with Donohue syndrome occur in both copies of the gene in each cell. Some of these mutations interfere with the normal processing of the protein initially produced from the INSR gene, which prevents the formation of a functioning insulin receptor. Other mutations impair the receptor’s ability to bind to insulin or disrupt the cell signaling pathways that insulin binding normally triggers. All of these mutations greatly reduce or eliminate the function of insulin receptors. Although insulin is present in the bloodstream, without functional receptors it cannot exert its effects on cells and tissues. This severe resistance to the effects of insulin impairs blood sugar regulation and affects many aspects of development. Rabson-Mendenhall syndrome INSR gene mutations also cause Rabson-Mendenhall syndrome, a severe insulin resistance syndrome whose features are intermediate in severity between Donohue syndrome (described above) and type A insulin resistance syndrome (described below). Affected individuals have features similar to those of Donohue syndrome, but they usually survive into their teens or twenties. Insulin resistance ultimately leads to a condition called diabetes mellitus, in which blood sugar levels can become dangerously high. The INSR gene mutations that cause Rabson-Mendenhall syndrome occur in both copies of the gene in each cell. These mutations reduce the number of insulin receptors that reach the cell membrane or disrupt the function of these receptors, but generally not as severely as the mutations associated with Donohue syndrome. Although insulin is present in the bloodstream, without enough functional receptors it is less able to exert its effects on cells and tissues. This severe resistance to the effects of insulin impairs blood sugar regulation and affects many aspects of development. type A insulin resistance syndrome INSR gene mutations also underlie the mildest of the severe insulin resistance syndromes, type A insulin resistance syndrome. Females with this condition develop abnormalities of the menstrual cycle, excessive body hair growth (hirsutism), ovarian cysts, a skin condition called acanthosis nigricans, and diabetes mellitus. Affected males tend to have fewer signs and symptoms, although they also develop diabetes mellitus. The features of type A insulin resistance syndrome often do not become apparent until puberty or later, and it is generally not life-threatening. Most of the INSR gene mutations that cause type A insulin resistance syndrome occur in one of the two copies of the gene in each cell. These mutations lead to the production of a faulty insulin receptor that cannot transmit signals properly. The changes are described as “dominant-negative” mutations because the faulty receptor produced from the mutated copy of the gene interferes with the normal receptor produced from the non-mutated copy of the gene. Less commonly, type A insulin resistance syndrome results from mutations in both copies of the INSR gene in each cell. These mutations impair the function of the insulin receptor. Although insulin is present in the bloodstream, the defective receptors make it less able to exert its effects on cells and tissues. This severe resistance to the effects of insulin impairs blood sugar regulation and leads to diabetes mellitus. In females with type A insulin resistance syndrome, excess insulin in the bloodstream interacts with hormonal factors during adolescence to cause menstrual abnormalities, ovarian cysts, and other features of the disorder.

     The INSR gene provides instructions for making a protein called an insulin receptor, which is found in many types of cells. Insulin receptors are embedded in the outer membrane surrounding the cell, where they attach (bind) to the hormone insulin circulating in the bloodstream. Insulin plays many roles in the body, including regulating blood sugar levels by controlling how much sugar (in the form of glucose) is passed from the bloodstream into cells to be used as energy. The insulin receptor is initially produced as a single long protein that must be processed by being cut (cleaved) into four parts: two alpha subunits and two beta subunits. These subunits work together as a functioning receptor. The alpha subunits stick out from the surface of the cell, while the beta subunits remain inside the cell. The alpha subunits attach (bind) to insulin, which causes the beta subunits to trigger signaling pathways within the cell that influence many cell functions.

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps