HLA-DQB1

Sign Up to Unlock Personalized Results

Summary

The HLA-DQB1 gene codes for major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1). HLA-DQB1 combines with another protein to form a human leukocyte antigen (HLA) protein [R]. 

HLA proteins are receptors found on the surface of white blood cells. They help flag and remove agents that can harm the body or cause infections [R, R].

Changes in the structure of HLA proteins can cause them to mistakenly flag our own proteins (autoimmunity) or harmless substances (allergies) [R, R].

HLA-DQB1 variants have been linked to many conditions, including [R, R, R]:

  • Alopecia
  • Type 1 diabetes
  • Allergies
  • Celiac disease

Protein names

major histocompatibility complex, class II, DQ beta 1 [Source:HGNC Symbol;Acc:HGNC:4944]

GHR Function

The HLA-DQB1 gene provides instructions for making a protein that plays a critical role in the immune system. The HLA-DQB1 gene is part of a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders such as viruses and bacteria.

 

The HLA complex is the human version of the major histocompatibility complex (MHC), a gene family that occurs in many species. The HLA-DQB1 gene belongs to a group of MHC genes called MHC class II. MHC class II genes provide instructions for making proteins that are present on the surface of certain immune system cells. These proteins attach to protein fragments (peptides) outside the cell. MHC class II proteins display these peptides to the immune system. If the immune system recognizes the peptides as foreign (such as viral or bacterial peptides), it triggers a response to attack the invading viruses or bacteria.

 

 

The protein produced from the HLA-DQB1 gene attaches (binds) to the protein produced from another MHC class II gene, HLA-DQA1. Together, they form a functional protein complex called an antigen-binding DQαβ heterodimer. This complex displays foreign peptides to the immune system to trigger the body's immune response.

 

 

Each MHC class II gene has many possible variations, allowing the immune system to react to a wide range of foreign invaders. Researchers have identified hundreds of different versions (alleles) of the HLA-DQB1 gene, each of which is given a particular number (such as HLA-DQB1*06:02).

 

More Information

HLA-DQB1 (major histocompatibility complex, class II, DQ beta 1) encodes a class 2 molecule that plays an important role in the immune system. It is important for bone marrow transplants (R). 

At least two specific combinations of HLA gene variants (HLA haplotypes) have been found to increase the risk of developing celiac disease, a disorder in which inflammation damages the intestinal tract and other organs and tissues. One of these haplotypes, known as DQ2, is composed of the protein produced from HLA-DQB1 gene variants known as HLA-DQB1*02:01 or HLA-DQB1*02:02 bound to the protein produced from HLA-DQA1 gene variants known as HLA-DQA1*05:01 or HLA-DQA1*05:05. The other haplotype, known as DQ8, is composed of the protein produced from the HLA-DQB1 gene variant known as HLA-DQB1*03:02 bound to the protein produced from HLA-DQA1 gene variants known as HLA-DQA1*03:01 or HLA-DQA1*03:02. The DQ2 and DQ8 haplotypes, which may occur separately or together, seem to increase the risk of an inappropriate immune response to the protein gluten, which is found in wheat, rye, and barley. This immune system malfunction results in the damage to the body's organs and tissues that occurs in celiac disease. However, the DQ2 and DQ8 haplotypes are also found in 30 percent of the general population, and only 3 percent of individuals with the gene variants develop celiac disease. juvenile idiopathic arthritis Genetics Home Reference provides information about juvenile idiopathic arthritis. narcolepsy A version of the HLA-DQB1 gene called HLA-DQB1*06:02 increases the risk of developing the sleep disorder narcolepsy, particularly in people who also have cataplexy. (Cataplexy is a sudden loss of muscle tone in response to strong emotion, such as laughing, surprise, or anger.) It is unclear how HLA-DQB1*06:02 causes this elevated risk. However, there is increasing evidence that narcolepsy is related to a malfunction of the immune system. The sleep abnormalities associated with narcolepsy likely result from a loss of particular brain cells (neurons) in a part of the brain called the hypothalamus. These cells normally produce chemicals called hypocretins (also known as orexins), which have many important functions in the body. In particular, hypocretins regulate the daily sleep-wake cycle. Researchers speculate that an abnormality of the immune system may trigger the loss of hypocretin-producing neurons in people with narcolepsy. However, there is no direct evidence to show that immune system factors are responsible for this loss. Most people who have narcolepsy with cataplexy have the HLA-DQB1*06:02 variation, and many also have specific versions of other, closely related HLA genes (including HLA-DQA1). However, these variations are very common in the general population, and only a small percentage of people with particular variations in HLA genes develop narcolepsy. Other genetic and environmental factors, for example certain bacterial and viral infections, also affect the chances of developing this disorder. type 1 diabetes Combinations of variations in the HLA-DQB1 gene and other HLA genes affect the risk of type 1 diabetes. Type 1 diabetes is characterized by high blood sugar levels resulting from a shortage of the hormone insulin and is caused by autoimmune damage to insulin-producing cells in the pancreas. Type 1 diabetes risk is most increased by two specific combinations of variations of the HLA-DQB1 and HLA-DQA1 genes and another HLA gene called HLA-DRB1. One haplotype, written as DRB1*03:01-DQA1*05:01-DQB1*02, is called DR3. The other haplotype, written as DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*02, is called DR4. People at highest risk of developing type 1 diabetes have one copy of the DR3 haplotype and one copy of the DR4 haplotype in each cell. Other HLA haplotypes only mildly increase the risk of type 1 diabetes, while some haplotypes seem to protect against developing this condition. Variations in other genes and environmental factors are also thought to affect the risk of this complex disorder. autoimmune disorders Normal variations of the HLA-DQB1 gene have been associated with several additional disorders. Most of these disorders have an autoimmune basis, which means they occur when the immune system malfunctions and attacks the body's own tissues and organs. Autoimmune disorders that have been associated with HLA-DQB1 include multiple sclerosis, pemphigus, and type 1 diabetes (described below). Multiple sclerosis is a chronic disorder of the brain and spinal cord (central nervous system) that causes muscle weakness, poor coordination, numbness, and a variety of other health problems. Several variations of HLA-DQB1 appear to increase the risk of developing this disorder. One of these variations, HLA-DQB1*06:02, is the same version of the gene that increases the risk of narcolepsy. Some evidence suggests that the HLA-DQB1 gene may also play a role in several forms of pemphigus, a condition that causes severe blistering of the skin and mucous membranes (such as the moist lining of the mouth). It is unclear how different versions of the HLA-DQB1 gene influence the risk of developing autoimmune disorders. These disorders typically result from a combination of multiple environmental and genetic factors. Changes in other HLA and non-HLA genes, some of which remain unknown, also likely contribute to the risk of developing these complex conditions.

The HLA-DQB1 gene provides instructions for making a protein that plays a critical role in the immune system. The HLA-DQB1 gene is part of a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders such as viruses and bacteria. The HLA complex is the human version of the major histocompatibility complex (MHC), a gene family that occurs in many species. The HLA-DQB1 gene belongs to a group of MHC genes called MHC class II. MHC class II genes provide instructions for making proteins that are present on the surface of certain immune system cells. These proteins attach to protein fragments (peptides) outside the cell. MHC class II proteins display these peptides to the immune system. If the immune system recognizes the peptides as foreign (such as viral or bacterial peptides), it triggers a response to attack the invading viruses or bacteria. The protein produced from the HLA-DQB1 gene attaches (binds) to the protein produced from another MHC class II gene, HLA-DQA1. Together, they form a functional protein complex called an antigen-binding DQαβ heterodimer. This complex displays foreign peptides to the immune system to trigger the body's immune response. Each MHC class II gene has many possible variations, allowing the immune system to react to a wide range of foreign invaders. Researchers have identified hundreds of different versions (alleles) of the HLA-DQB1 gene, each of which is given a particular number (such as HLA-DQB1*06:02).

Unlock Personalized Results And So Much More!

Shipping Worldwide

30-Days Money-Back Guarantee*

HSA/FSA Eligible

Essential Bundle

  • 24/7 AI Health Coach
  • 1250+ Comprehensive DNA Health Reports
  • Personalized Diet, Supplement, & Lifestyle Recommendations
  • Lifestyle Risk Assessments
  • Unlimited access to Labs Analyzer
$418
$376

Men's Health Month 10% Off

Essential

Bundle

  • Everything in essential
  • SelfDecode DNA Kit
  • Methylation Pathway
  • +130 Medical Reports
  • 25+ Longevity Screener Risk Assessments
  • Odds ratios to evaluate your risk for 25+ medical conditions
  • 10-year risk scores to prioritize health conditions
  • Lifetime risk scores to plan for long-term health
$667
$566

Men's Health Month 15% Off

Men's Health Month 30% Off

Ultimate Bundle

  • Everything in essential+
  • SelfDecode DNA Kit
  • Medication Check (PGx testing) for 50+ medications
  • 40+ Family Planning (Carrier Status) Reports
  • Ancestry Percentages
  • Mitochondrial Ancestry
$894
$625

* SelfDecode DNA kits are non-refundable. If you choose to cancel your plan within 30 days you will not be refunded the cost of the kit.

We will never share your data

We follow HIPAA and GDPR policies

We have World-Class Encryption & Security

People Love Us

Rated 4.7/5 from 750+ reviews

People Trust Us

200,000+ users, 2,000+ doctors & 80+ businesses

SelfDecode is a personalized health report service, which enables users to obtain detailed information and reports based on their genome. SelfDecode strongly encourages those who use our service to consult and work with an experienced healthcare provider as our services are not to replace the relationship with a licensed doctor or regular medical screenings.

SelfDecode © 2025. All rights reserved.

Health reports

High Blood Sugar
Anxiety
Gluten Sensitivity
Gut Inflammation
Blood Pressure
IBS
Mood
Insomnia
PTSD
Mood Swings
Overweight
Memory Performance
Sexual Dysfunction
PCOS
Psoriasis
Joint Pain
Attention/ADHD
Chronic Fatigue / Tiredness
Allergies
Asthma
Acne
Tinnitus
Eczema
Food Allergy
Vitamin B6
Vitamin E
Restless Leg Syndrome
Grinding Teeth
Vitamin A
Magnesium
Zinc
Heart Health
Migraines
(High) Cholesterol
Headache
Chronic Pain
Back pain
Shoulder & Neck Pain
Stress
Inflammation
Omega-3 needs
Salt Sensitivity
Endurance
Power performance
Strength
Exercise recovery
Brain Fog
Female Fertility
Longevity
Addiction
Erectile Dysfunction
Male Infertility
MTHFR
Joint Inflammation
GERD
Ulcers
Sleep Apnea
Periodontitis
Varicose Veins
H. pylori
Liver Health
Canker Sores
Gallstones
Kidney Health
Gout
Hair Loss (Male-Pattern Baldness)
Riboflavin
Urticaria
Rosacea
Carpal Tunnel Syndrome
Sinus Congestion
Cavities
Artery Hardening
Vertigo
Vitiligo
Myopia
Indigestion
Excessive Sweating
Testosterone – Males
Yeast infection (Candida)
Endometriosis
Tobacco addiction
Alcohol addiction
Uterine fibroids
Length of menstrual cycle
UTI
OCD
Kidney Stones
Vitamin B12
Vitamin C
Vitamin D
Folate
Iron
Eating Disorders
Bone Health
Hypothyroidism
Hyperthyroidism
Sugar Cravings
Hearing/difficulty problem /Hearing loss
Painful Periods
Palpitations
Hemorrhoids
Hypotension
Bladder Control
Constipation
Appendicitis
Low Blood Sugar
Irregular Periods
Metabolic rate
Visceral fat
Lung Health
Anemia
Calcium
Cognition
Cognitive Decline
Seasonal Low Mood
Vitamin K
Phosphate
HRV
Cluster headaches
Knee Pain
Hip Pain
Selenium
Low back injury
Dyslexia
Cannabis addiction
Histamine Intolerance
Carnitine
Pesticide Sensitivity
Organophosphate Sensitivity
Cadmium
Lead
Melatonin
FSH
T4
T3
High PTH
Potassium
Coenzyme Q10 (CoQ10)
Chromium
Oxalate Sensitivity
Salicylate Sensitivity
Facial Wrinkles
Age Spots
Ligament Rupture (ACL Injury)
Tendon Injury (Tendinopathy)
Omega 6
Omega 6:Omega 3 Ratio
Arachidonic Acid
Oleic Acid
Alpha-Linolenic Acid
EPA
GLA
Linoleic Acid
DHA
Insulin Resistance
Sperm Motility
Homocysteine
C difficile
Pneumonia
EBV Infection
Gastrointestinal Infection
Chronic Bronchitis
Copper
Skin Elasticity
Skin Hydration
Egg allergy
ApoB
GGT
TIBC
Bioavailable Testosterone (Male)
MPV
Chloride
Free T4
Processing Speed
Short-term memory
TMAO
Air pollution sensitivity
Heart Rate
VO2 Max
Flu
Hair graying
Caffeine-Related Sleep Problems
Groin Hernia
Stretch marks
Droopy Eyelids
Strep infection
Dry eyes
Carbohydrate Consumption
Peanut allergy
Heart rate recovery
Muscle recovery
Jaw Disorders
HPV Infection
Acute Bronchitis
Chlamydia
Genital Herpes
Pancreas inflammation
Executive Function
Pyroglutamic acid
Raynaud’s
Liver Scarring
Dandruff
Bioavailable Testosterone (Female)
Shrimp allergy
Haptoglobin
Milk allergy
Beta-Alanine
Taurine
LDL Particle Size
Diarrhea
Snoring
Uric acid
Phenylalanine
Leucine
Glutamine
Valine
Glycine
Alanine
Lysine
Arginine
Histidine
Tyrosine
Cortisol
DHEAS
Insulin
Prolactin
TSH
Lactate
Ketone Bodies
IL-17A (Th17 Dominance)
Creatine Kinase
Neutrophils
Basophils
Eosinophils
Ferritin
ALT
AST
MCV
Hematocrit
RDW
SHBG
Total Protein
Albumin
MCH
Sodium
MCHC
Alkaline Phosphatase
Monocytes
Ghrelin
IL10 (Th2)
IL-6 (Th2 and Th17)
Iodine
Chili Pepper sensitivity
COMT
DRD2 (Dopamine)
Lectin Sensitivity
Thiamine
Biotin
Mold Sensitivity (Foodborne)
Chronic Lyme
BDNF
Glyphosate sensitivity
BPA Sensitivity
Pregnenolone
Luteinizing Hormone (LH)
Growth Hormone
IgA
Molybdenum
Sensitivity to Dairy (IgG Casein)
Telomere Length
Serotonin (5HIAA)
Non-Celiac Gluten Sensitivity (IgG Gliadin)
Manganese
Klotho
Mold Sensitivity (Airborne)
Amylase
Lipase
Low Sperm Count
Tryptophan
Methionine
Glutamate
Proline
Blood Calcium
Hypertriglyceridemia
HDL Cholesterol
HbA1c
Hemoglobin
Total Cholesterol
LDL Cholesterol
IGF1
Fasting Glucose
Bilirubin (total)
White blood cell count
Red blood cell count
Platelets
eGFR
Creatinine
Estradiol
Neuroticism
Sleep Quality
Lactose Intolerance
Saturated fat
Optimal diet
Unsaturated fat
Achilles tendon injury
Deep sleep
Fat
Response to Stress
Leadership
Ankle injury
Creativity
Hoarding
Protein
Optimal Exercise
Knee Injury
Rotator cuff injury
Extraversion
Risk-Taking
Happiness
Daytime Sleepiness
Morningness
Time spent watching TV
Disliking cilantro
Alcohol Sensitivity
Response to Caffeine
Snacking
Weight Regain
Sleep movement
Wearing glasses or contacts
Educational Attainment
Bitter Taste Sensitivity
Agreeableness
Aggression
Conscientiousness
Openness to experience
Physical activity
Caffeine-Related Anxiety
Naps