Definition

A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. Testosterone is a steroid hormone from the androgen group and is found in mammals, reptiles, birds, and other vertebrates. In mammals, testosterone is primarily secreted in the testicles of males and the ovaries of females, although small amounts are also secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid. [Wikipedia]

Description

Testosterone is the most important androgen in potency and quantity•_Оa steroid sex hormone found in both men and women. Testosterone is synthesized and released by the Leydig cells that lie between the tubules and comprise less than 5% of the total testicular volume. testosterone diffuses into the seminiferous tubules where it is essential for maintaining spermatogenesis. Some binds to an androgen-binding protein (ABP) that is produced by the Sertoli cells and is homologous to the sex-hormone binding globulin that transports testosterone in the general circulation. The ABP carries testosterone in the testicular fluid where it maintains the activity of the accessory sex glands and may also help to retain testosterone within the tubule and bind excess free hormone. Some testosterone is converted to estradiol by Sertoli cell-derived aromatase enzyme. Leydig cell steroidogenesis is controlled primarily by luteinizing hormone with negative feedback of testosterone on the hypothalamic-pituitary axis. The requirement of spermatogenesis for high local concentrations of testosterone means that loss of androgen production is likely to be accompanied by loss of spermatogenesis. Indeed, if testicular androgen production is inhibited by the administration of exogenous androgens then spermatogenesis ceases. This is the basis of using exogenous testosterone as a male contraceptive. testosterone is converted to dihydrotestosterone by 5a-reductase type 2 (EC 1.3.1.22, SRD5A2), the androgen with the highest affinity for the androgen receptor. SRD5A2 deficiency illustrates the importance of dihydrotestosterone for external virilization, as individuals with this condition have normal male internal structures but their external genitalia are of female appearance. There is now clear evidence that the human fetal testis and also the fetal adrenal gland is capable of testosterone biosynthesis during the first trimester. Regardless of the source of androgen production, the target tissue responds by male sexual differentiation of the external genitalia by the end of the first trimester. It is clear that testicular damage may result in loss of testosterone production or the loss of spermatogenesis or both. Loss of androgen production results in hypogonadism, the symptoms of which reflect the functions of testosterone. Male hypogonadism is defined as failure of the testes to produce normal amounts of testosterone, combined with signs and symptoms of androgen deficiency. Systemic testosterone levels fall by about 1% each year in men. Therefore, with increasing longevity and the aging of the population, the number of older men with testosterone deficiency will increase substantially over the next several decades. Serum testosterone levels decrease progressively in aging men, but the rate and magnitude of decrease vary considerably. Approximately 1% of healthy young men have total serum testosterone levels below normal; in contrast, approximately 20% of healthy men over age 60 years have serum testosterone levels below normal. (A3376, A3377). In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue

Top Gene Interactions

Related Pathways

General Information

Mechanism of Action

Testosterone Interacts with Diseases

Testosterone Interacts with Genes